Emerald
Emerald (Beryl) Gemstones
Hardness
7.5 - 8.0.
Occurrence
Colombia, Brazil, Zimbabwe (Rhodesia), South Africa, Ural mountains
(Russia), Zambia, India, Tanzania, Pakistan, Australia, U.S.
(Connecticut, Maine, North Carolina), Austria and Norway.
Appearance
Emerald refers to the green variety of beryl. There are however, gem quality green beryls
which are not emeralds. All emeralds contain inclusions, which are
evidence as to the genuineness of the stone. The name is derived from
the Greek word Smaragdos, meaning "green stone". Emerald is the
birthstone of the month of May.
Enhancements
Emerald is usually treated with colorless oil, wax, or natural and
synthetic resins into voids to improve appearance. Surface cavities of
emerald is commonly filled with a hardened colorless substance. Emerald
is also occasionally dyed with dye or colored oil.
More information on gemstone enhancements.
Gemstone Family
Emerald is a member of the Beryl gemstone family.
Emerald
Emerald is a gemstone, and a variety of the mineral beryl (Be3Al2(SiO3)6) colored green by trace amounts of chromium and sometimes vanadium. Beryl has a hardness of 7.5–8 on the 10-point Mohs scale of mineral hardness. Most emeralds are highly included, so their toughness (resistance to breakage) is classified as generally poor.
Value
Emeralds, like all colored gemstones, are graded using four basic parameters–the 4Cs of Connoisseurship: Color, Cut, Clarity and Crystal. The last C, crystal, is simply a synonym for transparency, or what gemologists call diaphaneity. Before the 20th century, jewelers used the term water, as in "a gem of the finest water",to express the combination of two qualities: color and crystal. Normally, in the grading of colored gemstones, color is by far the most important criterion. However, in the grading of emeralds, crystal is considered a close second. Both are necessary conditions. A fine emerald must possess not only a pure verdant green hue as described below, but also a high degree of transparency to be considered a top gem.
In the 1960s, the American jewelry industry changed the definition of "emerald" to include the green vanadium-bearing beryl as emerald. As a result, vanadium emeralds purchased as emeralds in the United States are not recognized as such in the UK and Europe. In America, the distinction between traditional emeralds and the new vanadium kind is often reflected in the use of terms such as "Colombian Emerald".
Clarity
Emerald tends to have numerous inclusions and surface breaking fissures. Unlike diamond, where the loupe standard, i.e. 10× magnification, is used to grade clarity, emerald is graded by eye. Thus, if an emerald has no visible inclusions to the eye (assuming normal visual acuity) it is considered flawless. Stones that lack surface breaking fissures are extremely rare and therefore almost all emeralds are treated ("oiled", see below) to enhance the apparent clarity. Eye-clean stones of a vivid primary green hue (as described above) with no more than 15% of any secondary hue or combination (either blue or yellow) of a medium-dark tone command the highest prices. This relative crystal non-uniformity makes emeralds more likely than other gemstones to be cut into cabochons, rather than faceted shapes.
Treatments
Most emeralds are oiled as part of the post-lapidary process, in order to improve their clarity. Cedar oil, having a similar refractive index, is often used in this generally accepted practice. Other liquids, including synthetic oils and polymers with refractive indexes close to that of emerald such as Opticon are also used. The U.S. Federal Trade Commission requires the disclosure of this treatment when a treated emerald is sold. The use of oil is traditional and largely accepted by the gem trade. Other treatments, for example the use of green-tinted oil, are not acceptable in the trade. The laboratory community has recently standardized the language for grading the clarity of emeralds. Gems are graded on a four step scale; none, minor, moderate and highly enhanced. Note that these categories reflect levels of enhancement, not clarity. A gem graded none on the enhancement scale may still exhibit visible inclusions. Laboratories tend to apply these criteria differently. Some gem labs consider the mere presence of oil or polymers to constitute enhancement. Others may ignore traces of oil if the presence of the material does not materially improve the look of the gemstone.
Given that the vast majority of all emeralds are treated as described above, and the fact that two stones that appear visually similar may actually be quite far apart in treatment level and therefore in value, a consumer considering a purchase of an expensive emerald is well advised to insist upon a treatment report from a reputable gemological laboratory. All other factors being equal, a high quality emerald with moderate enhancement should cost half the price of an identical stone graded none.
Syntetic Emerald
Both hydrothermal and flux-growth synthetics have been produced, and a method has been developed for producing an emerald overgrowth on colorless beryl. The first commercially successful emerald synthesis process was that of Carroll Chatham, likely involving a lithium vanadate flux process, as Chatham's emeralds do not have any water and contain traces of vanadate, molybdenum and vanadium.[verification needed] The other large producer of flux emeralds was Pierre Gilson Sr., whose products have been on the market since 1964. Gilson's emeralds are usually grown on natural colorless beryl seeds, which are coated on both sides. Growth occurs at the rate of 1 mm per month, a typical seven-month growth run producing emerald crystals of 7 mm of thickness.Gilson sold his production laboratory to a Japanese firm in the 1980s, but production has since ceased; so has Chatham's, after the 1989 San Francisco earthquake.
Hydrothermal synthetic emeralds have been attributed to IG Farben, Nacken, Tairus, and others, but the first satisfactory commercial product was that of Johann Lechleitner of Innsbruck, Austria, which appeared on the market in the 1960s. These stones were initially sold under the names "Emerita" and "Symeralds", and they were grown as a thin layer of emerald on top of natural colorless beryl stones. Although not much is known about the original process, it is assumed that Leichleitner emeralds were grown in acid conditions.[citation needed] Later, from 1965 to 1970, the Linde Division of Union Carbide produced completely synthetic emeralds by hydrothermal synthesis. According to their patents,acidic conditions are essential to prevent the chromium (which is used as the colorant) from precipitating. Also, it is important that the silicon-containing nutrient be kept away from the other ingredients to prevent nucleation and confine growth to the seed crystals. Growth occurs by a diffusion-reaction process, assisted by convection. The largest producer of hydrothermal emeralds today is Tairus in Russia, which has succeeded in synthesizing emeralds with chemical composition similar to emeralds in alkaline deposits in Colombia, and whose products are thus known as “Colombian Created Emeralds” or “Tairus Created Emeralds”. Luminescence in ultraviolet light is considered a supplementary test when making a natural vs. synthetic determination, as many, but not all, natural emeralds are inert to ultraviolet light. Many synthetics are also UV inert.
Synthetic emeralds are often referred to as "created", as their chemical and gemological composition is the same as their natural counterparts. The U.S. Federal Trade Commission (FTC) has very strict regulations as to what can and what cannot be called "synthetic" stone. The FTC says: "§ 23.23(c) It is unfair or deceptive to use the word "laboratory-grown," "laboratory-created," "[manufacturer name]-created," or "synthetic" with the name of any natural stone to describe any industry product unless such industry product has essentially the same optical, physical, and chemical properties as the stone named."
No comments:
Post a Comment